How Low Can We Go? Disc Hemorrhages, NTG, and 24-hour Control

ROMA PATEL, MD MBA BAYLOR COLLEGE OF MEDICINE ASSOCIATE PROFESSOR CHIEF OF OPHTHALMOLOGY & MEDICAL DIRECTOR, BEN TAUB HOSPITAL & HARRIS HEALTH EYE CLINICS

Case Presentation

- 51 yo Caucasian female presents for glaucoma evaluation
- No know IOP range, but mother recently diagnosed with advanced glaucoma
- Denies any ocular complaints including pain, discomfort, trauma, flashes

Recommendation

- Opted to follow patient off drops
- Return visit in 4 months:
- VA unchanged: IOP 20 OD, 16 OS
 Undilated exam: unchanged

Returns at 8 months Exam unchanged

4

OCT Role in correlating RNFL thickness and Disc Hemorrhage

- ▶ 32 eyes with POAG/NTG (19%/81%)
- "Disc Hemorrhage is associated with RNFL thinning measured by Optical Coherence Tomography"
- Negative Correlation between the number of recurrent hemorrhages and RNFL thickness
- Chai, Jin et al. Retinal Nerve Fiber Cayer Thickness Evaluation Using Optical Coherence Tomography in Eyes With Optic Disc Hemorrhage. Ophthalmic Surgery and Lasers. 38(2), March/April 2007. 118-125

OCT - Use sector analysis

Optic Disc Other Disc	: He ease	emc Əs	orrh	ages	s and
Platelet aggregation inhibitors Antihypertensive agents Cholesterol-lowering agents	OR 3.16 1.10 0.94	959 1.97 0.82 0.23	6 CI 5.06 1.47 3.80	P value <0.0001 0.5241 0.9286	Older Age & platelet
Triple combination Warfarin Diabetes Gender (male) Age	2.20 0.94 0.78 0.78 1.10	0.89 0.38 0.38 0.60 1.07	5.40 2.31 1.58 0.99 1.13	0.0865 0.8925 0.4872 0.0446 <0.0001	aggregation inhibitors were more common in patients with disc hemorrhage
n, number of individuals; OR	., odds ra	tio; CI, c	onfidence	e interval.	Geolani, Battar di Opto De Henemiti 1983 and n 202 201 Statu from Molino, Manemiti 1983 and n 202 201 Statu from Molino, Manemiti

Clinician Considerations

- Patient context
 - (1) Am I meeting pressure goals?
 - (2) Is the patient compliant?
 - (3) Do I need to more intensively follow the p
 - (4) Escalate treatment?
 - (5) Am I missing other disease processes?

Back to Our Patient

- No other causes for disc hemorrhage
- New Diagnosis Normal Tension Glaucoma
- Patient was offered PGA vs SLT
- Elected for SLT OD
- After SLT IOP 13 OD

Normal Tension Glaucoma

- ► Diagnosis of exclusion
- Glaucomatous optic neuropathy: cupping
- Characteristic patterns of visual field loss
- ▶ IOP < 21mmHg check diurnal patterns
- Progressive disease

Japan	92%	
Singapore	84.6%	
China	51.43% - 83.58%	
Netherlands	38.9%	k
United States	31.7%	
Italy	30%	

Make sure NTG fits!

- History: lower BMI, cold hand/feet, migraines, childhood motion sickness, ?Type A personality
- Family History of 1st degree relative (96% specific)
- Color vision (typically normal until late)
- Pachymetry, IOP with diurnal curve
- Blood work: CBC, B12/folate levels, Neurosyphilis

0

TABLE 3. Systemic Metrics: An Odds Rati	o > 1 Indicates	a Higher Frequency in the LTG	Group, Whereas an Odds I	Ratio of <1
Systemic Factors	Odds Ratio	Confidence Interval (95%)	P	Significant findings
BMI'	0.98	0.95-1.01	0.3	significarit finalitys.
BMI 25 30 va + 30	1.30	0.97-1.94	0.2	
BMI < 25 vs. > 30	1.69	1.09-2.61	0.02	BMI <25 or > 30
Systemic hypertension	1.64	1.17-2.31	0.004	Systemic HTN
Dyslipidemia	1.29	0.92-1.82	0.1	Diabetes Mellitus
Diabetes mellitus	3.01	1.93-4.67	< 0.001	Beripherel Vero Dz
Obstructive sleep apnea	0.91	0.59-1.40	0.7	renprierar vasc Dz
Coronary artery disease	1.36	0.89-2.08	0.2	
Peripheral vascular disease	2.61	1.27-5.34	• 0.009	
Cerebrovascular disease	1.46	0.72-2.96	0.3	
Carotid stenosis	1.52	0.53-4.32	0.4	Migraines
Migraines	2.12	1.11-4.04	0.02	Migraines
upus	3.02	0.31-29.23	0.2	Raynaud
laynaud syndrome	3.09	0.98-9.70	0.05	Anemia
nemia	2.18	1.31-3.61	0.03	Systemic hypotension
stemic hypotension/syncope	4.43	244.9.01	0.003	Syncope
icohol use	0.97		< 0.001	oyneope
noking history	1.00	0.69-1.3	0.9	
noking history	1.00	0.70-1.43	1	

Other causes for cupping

- ▶ 50% of GCA developed cupping vs 10% NAION

- Hereditary optic neuropathy
 Leber's hereditary optic neuropathy
 Autosomal Dominant Optic Atrophy
 Traumatic optic neuropathy

Rule these out first:

- Past Steroid Use
- "Burned Out" Pigment Dispersion
- Compressive Lesion
- Vascular Cause- hypotension, anemia

0

- Optic Nerve Congenital Abnormality
- ► Hypotensive Event

Who needs a MRI?

- Age < 50 years old</p>

- Atypical visual field for glaucoma
- Arypical visual ries for gradeonia
 Dense central or cecocentral losses
 Scotomas respect vertical meridian, temporal hemianopia
 Arypical rate of VF loss despite IOP control
 Unilateral disease
 Pallor > cupping
 Presence of HA or other neurological symptoms

- Greenfield DS et al. The cupped disc: Who Needs Neuroin Ophthalmology 1998. 105 (10). 1866-1874. aging.

Collaborative NTG Study Key Findings

- Lowering IOP by 30% impacted progression: 35% of untreated vi 12% treated
- Risk factors for progression:

Treatment Goals

- More aggressive for Females, Vasospasm or Disc hem
- Avoid certain systemic medications:

 - beta-blockers or Viagra
 Reduce PM antihypertensives
- Check home BP when laying down

SLT and NTG

- ▶ 20% IOP lowering (13.5 -> 11)
- Decreases nocturnal IOP fluctuations
- In Japan: effective initial treatment for NIG

J Glauce

a. 2013

Medical treatment

Prostaglandins - #1

- good at Normotension range, 15-30% IOP reduction consistent coverage over 24hrs, particularly in the second sec

Carbonic Anhydrase Inhibitors

- 10 % reduction in NT, less potent
 Good nocturnal efficacy, adjunctive to PGs

reduces 10-20% in NTG but no nocturnal control
 LoGTS Trial Outcome : At 30 months, brimonidine group had less VF loss (9% vs 39.2%) compared to Timolol despite similar IOP

Rhopressa Rho Kinase (ROCK) inhibitor drugs potentially able to lower IOP from permal EVP levels (<10-12) Targets both TM outflow, lowers EVP & reduces aqueous production My experience - Amazing for 50% of patients; can't predict who For NTG, I will try after SLT and PGA

Surgical Interventions

- Some do well with Xen gel stents
- I will try Xen first in those patients who are IDEAL bleb makers
- ▶ Phaco disrupts B;eb function
- Consider Phaco / OMNI or Phaco/iTrack if cataract present

Refer early if paracentral losse

Doc, What Else Can Do?

- No Nocturnal hypotension including Viag
 Aim for Average BMI
- Avoid inversion/yoga/wind instruments
 Discuss sleep position unilateral worsening w/

- Gingko biloba & Resveratrol
 Memantine worked in animals, no effect in human RCTs
 Switch to Calcium channel blockers vs BB for HTN

Durysta sustained bimatoprost implant

Ocular Pressure Adjusting Pump "OPAP"

- Programmable pressure-modulating pump Designed to be compact and portable Two mini diaphragm pumps for creating negative pressure levels in each eye
- Each pump exerts up to -40 mmHg relative atmospheric pressure (limited to -20 mmHg)

OPAP

"the data demonstrated a reasonable assurance of, adjunctive therapy for the indicated patient (ie: NTG

▶ Side effects: Eyelid edema 12% 3-5% → Dry eyes, Conjunctival hyperemia, and Eye pain

LIGHT trial

- ► 360 degree SLT

- 78% of SLT first eyes were drop/surgery free @ 3 years
 77% only needed 1 treatment
 SLT was repeated if needed and of them, 60% met target

Belkin Direct SLT (DSLT) "Eagle" Acquired by Alcon FDA clearance December 2023 May 2022 – available in the European Union (EU) and the United Kingdom (UK) Q-switched, 532 nm-wavelength, frequency-doubled, (Nd:YAG) laser device

